Grundbegriffe der KI vorgestellt

Deutscher Bundestag 2

Künstliche Intelligenz - Gesellschaftliche Verantwortung und wirtschaftliche Potenziale 

Die Enquete-Kommission »Künstliche Intelligenz - Gesellschaftliche Verantwortung und wirtschaftliche, soziale und ökologische Potenziale« ist am Montagmorgen mit begriffsklärenden Vorträgen in eine ganztägige Klausurtagung gestartet. Fünf Sachverständige der Kommission erläuterten dabei in öffentlicher Sitzung Grundbegriffe rund um die »Künstliche Intelligenz«. In nicht-öffentlicher Sitzung schloss sich eine Fragerunde an. Im weiteren Verlauf des Montags wollen die Mitglieder der Kommission zudem in Gruppen den Arbeitsauftrag der Kommission konkretisieren.

Aljoscha Burchardt (DFKI, Deutsches Forschungszentrum für Künstliche Intelligenz) führte aus, dass der Begriff »Künstliche Intelligenz« (KI) schwer zu definieren sei, weil auch der Begriff der menschlichen Intelligenz kaum definiert sei. Burchardt unterschied grundlegend zwischen »starker KI« als Vorstellung eines den Menschen imitierenden Systems und »schwacher KI« als Einzeltechnologien zur »smarten Mensch-Maschinen-Interaktion«. Über »starke KI« werde im seriösen Umfeld eigentlich nicht geredet. Der Fokus liegt laut Burchardt vielmehr auf der »schwachen KI«. In diesem Sinne ist laut Burchardt KI, insbesondere durch das maschinelle Lernen, das wesentliche Mittel der »zweiten Welle der Digitalisierung«.

Antonio Krüger (ebenfalls DFKI) stellte die KI-Forschung als einen »Kanon von interdisziplinären Wissenschaften« dar. So differenzierte er etwa zwischen ingenieurwissenschaftlichen Zielen der KI-Entwicklung, die den wesentlichen Einsatzbereich ausmachten, und kognitionswissenschaftlichen Zielen. Im letzteren Bereich werde KI genutzt, um kognitive Prozesse besser zu verstehen. Krüger führte aus, dass KI-Systeme aktuell grundsätzlich besser mit aus menschlicher Sicht schweren Problemen, beispielsweise dem Suchen von Fehlern in Computerchips oder das Spielen von Schach auf höchsten Niveau, umgehen könnten. Aus menschlicher Sicht leichte Probleme, beispielsweise eine SIM-Karte zu wechseln oder einen Witz zu verstehen, seien für KI-Systeme hingegen schwer zu lösen.

Katharina Zweig (TU Kaiserslautern) ging in ihrem Vortrag auf zwei Grundängste gegenüber der KI ein: Menschen fürchteten demnach sowohl eine KI, die dichten könne und somit den Menschen ersetze, als auch eine KI, die richten könne, also Menschen bewertet beziehungsweise klassifiziert. Zweig skizzierte ein Konzept, nach welchen Kriterien die Anwendung von KI-Systemen im Bewertungs- beziehungsweise Klassifikationsbereich reguliert werden könnte.

Hannah Bast (Albert-Ludwigs-Universität Freiburg) stellte die grundsätzliche Funktionsweise des maschinellen Lernens (ML) und neuraler Netzwerke vor und grenzte diese Methode von klassischen Algorithmen ab. ML ermögliche es, komplexe Probleme wie Bildverarbeitung oder Spracherkennung ohne Vorgabe von Regeln anzugehen, was mit klassischen Algorithmen nicht möglich sei. ML revolutioniere die Informatik und die Welt, sagte Bast. Das sei »kein Hype, sondern einfach Fakt«. Allerdings sei die Anwendung auf klar eingegrenzte Probleme beschränkt.

Sami Haddadin (TU München) trug zu KI-Anwendungen im Bereich der Robotik vor. KI führe in diesem Feld zu Innovationssprüngen, denn es ermögliche Anwendungen etwa im Bereich der Montage, die für die bisherigen Systeme nicht möglich gewesen seien. Haddadin führte dazu ein Beispiel aus der Forschung aus, bei dem es darum geht, Robotern das Einführen von Schlüsseln beizubringen und gelernte Fähigkeiten auf andere Problemkonstellationen zu übertragen.

   

  VERWEISE  
  •  ...

 

Ähnliche Themen

KI im Bildungskontext
Nationales Bildungspanel startet Aufruf für Fragemodule zu Nutzungsmotiven, Wissen, Vertrauen Das Nationale Bildungspanel ruft Forscherinnen und Forscher außerhalb des NEPS-Netzwerks auf, Vorschläge für neue Fragemodule einzureichen. Der...
ICILS 2023: Internationale Vergleichsstudie zu digitalen Kompetenzen von Schüler*innen
Digitale Kompetenzen sind für junge Menschen heute wichtiger denn je. Vor diesem Hintergrund zeigt die internationale Vergleichsstudie »International Computer and Information Literacy Study 2023« (ICILS 2023), wie es um die Kompetenzen von...
Future Skills: Kollaboration als essenzielle Fähigkeit in der Hochschulbildung
Problemlösung und kritisches Denken als zentrale Future Skills In einer neuen Studie des Centrums für Hochschulentwicklung (CHE) wurde untersucht, welche Kompetenzen Hochschullehrende für die Zukunft als besonders wichtig erachten. Die Ergebnisse...

.
Oft gelesen...